Physicists have developed a groundbreaking atomic radio frequency sensor for radio waves, offering enhanced sensitivity and versatility. Ideal for defense and satellite technology, this metal-free, laser-powered design promises real-world applications, as documented in Applied Physics Letters.
New Antenna Technology Using Atomic Vapor
University of Otago physicists have used a small glass bulb containing an atomic vapor to demonstrate a new form of antenna for radio waves. The bulb was “wired up” with laser beams and could therefore be placed far from any receiver electronics.
Innovative Radio Frequency Sensor
Dr. Susi Otto, from the Dodd-Walls Centre for Photonic and Quantum Technologies, led the field testing of the portable atomic radio frequency sensor.
These sensors utilize atoms in a unique Rydberg state. Due to this state, they can outperform current antenna technologies in terms of sensitivity, tunability, and compactness. This makes them particularly suitable for defense and communication applications.
Applications in Defense and Satellite Technology
A key advantage is their ability to cover the entire spectrum of radio frequencies. This means soldiers on the battlefield could potentially use just one of these sensors instead of multiple antennas tailored to different frequency bands. Their heightened sensitivity and accuracy also enable them to detect a vast array of essential signals. In the realm of satellite technology, the elimination of the need for multiple sensors is a game-changer.
Advantages Over Traditional Sensors
Another significant benefit of Rydberg sensors is their metal-free composition. Traditional sensors contain metal components that can disrupt the radio frequency field. In contrast, the atomic sensor in the Rydberg state uses laser light, eliminating the necessity for electric cables.
Portability and Real-World Application
The Otago group’s new design is portable and can be taken outside the laboratory. In a first out-of-lab demonstration, the sensor was able to efficiently measure fields at a distance of 30m (100 feet) using a free-space laser link. This adds important flexibility to Rydberg-atom based sensing technologies.
They envision these developments will make quantum sensors more robust and cost-effective, enabling them to move out of labs and into the real world.
A paper on the creation was recently published in Applied Physics Letters.
Reference: “Distant RF field sensing with a passive Rydberg-atomic transducer” by J. Susanne Otto, Matthew Chilcott, Amita B. Deb and Niels Kjærgaard, 3 October 2023, Applied Physics Letters.
DOI: 10.1063/5.0169993